这几天在看《Rich feature hierarchies for accurate object detection and semantic segmentation 》,觉得作者的科研素养非常棒,考虑问题很全面而且很有逻辑性;
不过暂时有的地方看的也不是太懂,这里转载了一篇博客中的介绍,博主写的不错;
博客链接:http://blog.csdn.net/wopawn/article/details/52133338
paper链接:链接: https://pan.baidu.com/s/1qYO4vY8 密码: 62fd
paper中相关名词解释:链接: https://pan.baidu.com/s/1nuAhidz 密码: pnsh
再推荐一个博客:http://blog.csdn.net/hjimce/article/details/50187029
&创新点
-
采用CNN网络提取图像特征,从经验驱动的人造特征范式HOG、SIFT到数据驱动的表示学习范式,提高特征对样本的表示能力;
-
采用大样本下有监督预训练+小样本微调的方式解决小样本难以训练甚至过拟合等问题。
-
近10年以来,以人工经验特征为主导的物体检测任务mAP【物体类别和位置的平均精度】提升缓慢;
-
随着ReLu激励函数、dropout正则化手段和大规模图像样本集ILSVRC的出现,在2012年ImageNet大规模视觉识别挑战赛中,Hinton及他的学生采用CNN特征获得了最高的图像识别精确度;
-
上述比赛后,引发了一股“是否可以采用CNN特征来提高当前一直停滞不前的物体检测准确率“的热潮。
【写给小白:一图理解图像分类,图像定位,目标检测和实例分割】
&如何解决问题
。测试过程
-
输入一张多目标图像,采用selective search算法提取约2000个建议框;
-
先在每个建议框周围加上16个像素值为建议框像素平均值的边框,再直接变形为227×227的大小;
-
先将所有建议框像素减去该建议框像素平均值后【预处理操作】,再依次将每个227×227的建议框输入AlexNet CNN网络获取4096维的特征【比以前的人工经验特征低两个数量级】,2000个建议框的CNN特征组合成2000×4096维矩阵;
-
将2000×4096维特征与20个SVM组成的权值矩阵4096×20相乘【20种分类,SVM是二分类器,则有20个SVM】,获得2000×20维矩阵表示每个建议框是某个物体类别的得分;
-
分别对上述2000×20维矩阵中每一列即每一类进行非极大值抑制剔除重叠建议框,得到该列即该类中得分最高的一些建议框;
-
分别用20个回归器对上述20个类别中剩余的建议框进行回归操作,最终得到每个类别的修正后的得分最高的bounding box。
。解释分析
-
selective search
采取过分割手段,将图像分割成小区域,再通过颜色直方图,梯度直方图相近等规则进行合并,最后生成约2000个建议框的操作,具体见。 -
为什么要将建议框变形为227×227?怎么做?
本文采用AlexNet CNN网络进行CNN特征提取,为了适应AlexNet网络的输入图像大小:227×227,故将所有建议框变形为227×227。 那么问题来了,如何进行变形操作呢?作者在补充材料中给出了四种变形方式:① 考虑context【图像中context指RoI周边像素】的各向同性变形,建议框像周围像素扩充到227×227,若遇到图像边界则用建议框像素均值填充,下图第二列;
② 不考虑context的各向同性变形,直接用建议框像素均值填充至227×227,下图第三列; ③ 各向异性变形,简单粗暴对图像就行缩放至227×227,下图第四列; ④ 变形前先进行边界像素填充【padding】处理,即向外扩展建议框边界,以上三种方法中分别采用padding=0下图第一行,padding=16下图第二行进行处理;经过作者一系列实验表明采用padding=16的各向异性变形即下图第二行第三列效果最好,能使mAP提升3-5%。
-
CNN特征如何可视化?
文中采用了巧妙的方式将AlexNet CNN网络中Pool5层特征进行了可视化。该层的size是6×6×256,即有256种表示不同的特征,这相当于原始227×227图片中有256种195×195的感受视野【相当于对227×227的输入图像,卷积核大小为195×195,padding=4,step=8,输出大小(227-195+2×4)/8+1=6×6】; 文中将这些特征视为”物体检测器”,输入10million的Region Proposal集合,计算每种6×6特征即“物体检测器”的激活量,之后进行非极大值抑制【下面解释】,最后展示出每种6×6特征即“物体检测器”前几个得分最高的Region Proposal,从而给出了这种6×6的特征图表示了什么纹理、结构,很有意思。 -
为什么要进行非极大值抑制?非极大值抑制又如何操作?
先解释什么叫IoU。如下图所示IoU即表示(A∩B)/(A∪B) 在测试过程完成到第4步之后,获得2000×20维矩阵表示每个建议框是某个物体类别的得分情况,此时会遇到下图所示情况,同一个车辆目标会被多个建议框包围,这时需要非极大值抑制操作去除得分较低的候选框以减少重叠框。 具体怎么做呢? ① 对2000×20维矩阵中每列按从大到小进行排序; ② 从每列最大的得分建议框开始,分别与该列后面的得分建议框进行IoU计算,若IoU>阈值,则剔除得分较小的建议框,否则认为图像中存在多个同一类物体; ③ 从每列次大的得分建议框开始,重复步骤②; ④ 重复步骤③直到遍历完该列所有建议框; ⑤ 遍历完2000×20维矩阵所有列,即所有物体种类都做一遍非极大值抑制; ⑥ 最后剔除各个类别中剩余建议框得分少于该类别阈值的建议框。【文中没有讲,博主觉得有必要做】 -
为什么要采用回归器?回归器是什么有什么用?如何进行操作?
首先要明确目标检测不仅是要对目标进行识别,还要完成定位任务,所以最终获得的bounding-box也决定了目标检测的精度。 这里先解释一下什么叫定位精度:定位精度可以用算法得出的物体检测框与实际标注的物体边界框的IoU值来近似表示。如下图所示,绿色框为实际标准的卡宴车辆框,即Ground Truth;黄色框为selective search算法得出的建议框,即Region Proposal。即使黄色框中物体被分类器识别为卡宴车辆,但是由于绿色框和黄色框IoU值并不大,所以最后的目标检测精度并不高。采用回归器是为了对建议框进行校正,使得校正后的Region Proposal与selective search更接近, 以提高最终的检测精度。论文中采用bounding-box回归使mAP提高了3~4%。
那么问题来了,回归器如何设计呢? 如上图,黄色框口P表示建议框Region Proposal,绿色窗口G表示实际框Ground Truth,红色窗口G^表示Region Proposal进行回归后的预测窗口,现在的目标是找到P到G^的线性变换【当Region Proposal与Ground Truth的IoU>0.6时可以认为是线性变换】,使得G^与G越相近,这就相当于一个简单的可以用最小二乘法解决的线性回归问题,具体往下看。 让我们先来定义P窗口的数学表达式:Pi=(Pix,Piy,Piw,Pih),其中(Pix,Piy)表示第一个i窗口的中心点坐标,Piw,Pih分别为第i个窗口的宽和高;G窗口的数学表达式为:Gi=(Gix,Giy,Giw,Gih);G^窗口的数学表达式为:G^i=(G^ix,G^iy,G^iw,G^ih)。以下省去i上标。 这里定义了四种变换函数,dx(P),dy(P),dw(P),dh(P)。dx(P)和dy(P)通过平移对x和y进行变化,dw(P)和dh(P)通过缩放对w和h进行变化,即下面四个式子所示:G^x=Pwdx(P)+Px(1)G^y=Phdy(P)+Py(2)G^w=Pwexp(dw(P))(3)G^h=Phexp(dh(P))(4)每一个d∗(P)【*表示x,y,w,h】都是一个AlexNet CNN网络Pool5层特征ϕ5(P)的线性函数,即d∗(P)=wT∗ϕ5(P) ,这里wT∗就是所需要学习的回归参数。损失函数即为:
Loss=argmin∑i=0N(ti∗−w^T∗ϕ5(Pi))2+λ||w^∗||2(5)损失函数中加入正则项λ||w^∗||2 是为了避免归回参数wT∗过大。其中,回归目标t∗由训练输入对(P,G)按下式计算得来:
tx=(Gx−Px)/Pw(6)ty=(Gy−Py)/Ph(7)tw=log(Gw/Pw)(8)th=log(Gh/Ph)(9)①构造样本对。为了提高每类样本框回归的有效性,对每类样本都仅仅采集与Ground Truth相交IoU最大的Region Proposal,并且IoU>0.6的Region Proposal作为样本对(Pi,Gi),一共产生20对样本对【20个类别】; ②每种类型的回归器单独训练,输入该类型样本对N个:{ (Pi,Gi)}i=1⋯N以及Pii=1⋯N所对应的AlexNet CNN网络Pool5层特征ϕ5(Pi)i=1⋯N; ③利用(6)-(9)式和输入样本对{ (Pi,Gi)}i=1⋯N计算ti∗i=1⋯N; ④利用ϕ5(Pi)i=1⋯N和ti∗i=1⋯N,根据损失函数(5)进行回归,得到使损失函数最小的参数wT∗。
。训练过程
-
有监督预训练
样本 来源 正样本 ILSVRC2012 负样本 ILSVRC2012 -
特定样本下的微调
样本 来源 正样本 Ground Truth+与Ground Truth相交IoU>0.5的建议框【由于Ground Truth太少了】 负样本 与Ground Truth相交IoU≤0.5的建议框 -
SVM训练
样本 来源 正样本 Ground Truth 负样本 与Ground Truth相交IoU<0.3的建议框 -
Bounding-box regression训练
样本 来源 正样本 与Ground Truth相交IoU最大的Region Proposal,并且IoU>0.6的Region Proposal
。解释分析
-
什么叫有监督预训练?为什么要进行有监督预训练?
有监督预训练也称之为迁移学习,举例说明:若有大量标注信息的人脸年龄分类的正负样本图片,利用样本训练了CNN网络用于人脸年龄识别;现在要通过人脸进行性别识别,那么就可以去掉已经训练好的人脸年龄识别网络CNN的最后一层或几层,换成所需要的分类层,前面层的网络参数直接使用为初始化参数,修改层的网络参数随机初始化,再利用人脸性别分类的正负样本图片进行训练,得到人脸性别识别网络,这种方法就叫做有监督预训练。这种方式可以很好地解决小样本数据无法训练深层CNN网络的问题,我们都知道小样本数据训练很容易造成网络过拟合,但是在大样本训练后利用其参数初始化网络可以很好地训练小样本,这解决了小样本训练的难题。
这篇文章最大的亮点就是采用了这种思想,ILSVRC样本集上用于图片分类的含标注类别的训练集有1millon之多,总共含有1000类;而PASCAL VOC 2007样本集上用于物体检测的含标注类别和位置信息的训练集只有10k,总共含有20类,直接用这部分数据训练容易造成过拟合,因此文中利用ILSVRC2012的训练集先进行有监督预训练。 -
ILSVRC 2012与PASCAL VOC 2007数据集有冗余吗?
即使图像分类与目标检测任务本质上是不同的,理论上应该不会出现数据集冗余问题,但是作者还是通过两种方式测试了PASCAL 2007测试集和ILSVRC 2012训练集、验证集的重合度:第一种方式是检查网络相册IDs,4952个PASCAL 2007测试集一共出现了31张重复图片,0.63%重复率;第二种方式是用GIST描述器匹配的方法,4952个PASCAL 2007测试集一共出现了38张重复图片【包含前面31张图片】,0.77%重复率,这说明PASCAL 2007测试集和ILSVRC 2012训练集、验证集基本上不重合,没有数据冗余问题存在。
-
可以不进行特定样本下的微调吗?可以直接采用AlexNet CNN网络的特征进行SVM训练吗?
文中设计了没有进行微调的对比实验,分别就AlexNet CNN网络的pool5、fc6、fc7层进行特征提取,输入SVM进行训练,这相当于把AlexNet CNN网络当做万精油使用,类似HOG、SIFT等做特征提取一样,不针对特征任务。实验结果发现f6层提取的特征比f7层的mAP还高,pool5层提取的特征与f6、f7层相比mAP差不多;
在PASCAL VOC 2007数据集上采取了微调后fc6、fc7层特征较pool5层特征用于SVM训练提升mAP十分明显; 由此作者得出结论:不针对特定任务进行微调,而将CNN当成特征提取器,pool5层得到的特征是基础特征,类似于HOG、SIFT,类似于只学习到了人脸共性特征;从fc6和fc7等全连接层中所学习到的特征是针对特征任务特定样本的特征,类似于学习到了分类性别分类年龄的个性特征。 -
为什么微调时和训练SVM时所采用的正负样本阈值【0.5和0.3】不一致?
微调阶段是由于CNN对小样本容易过拟合,需要大量训练数据,故对IoU限制宽松:Ground Truth+与Ground Truth相交IoU>0.5的建议框为正样本,否则为负样本;
SVM这种机制是由于其适用于小样本训练,故对样本IoU限制严格:Ground Truth为正样本,与Ground Truth相交IoU<0.3的建议框为负样本。 -
为什么不直接采用微调后的AlexNet CNN网络最后一层SoftMax进行21分类【20类+背景】?
因为微调时和训练SVM时所采用的正负样本阈值不同,微调阶段正样本定义并不强调精准的位置,而SVM正样本只有Ground Truth;并且微调阶段的负样本是随机抽样的,而SVM的负样本是经过hard negative mining方法筛选的;导致在采用SoftMax会使PSACAL VOC 2007测试集上mAP从54.2%降低到50.9%。
-
PASCAL VOC 2010测试集上实现了53.7%的mAP;
-
PASCAL VOC 2012测试集上实现了53.3%的mAP;
-
计算Region Proposals和features平均所花时间:13s/image on a GPU;53s/image on a CPU。
-
-
很明显,最大的缺点是对一张图片的处理速度慢,这是由于一张图片中由selective search算法得出的约2k个建议框都需要经过变形处理后由CNN前向网络计算一次特征,这其中涵盖了对一张图片中多个重复区域的重复计算,很累赘;
-
知乎上有人说R-CNN网络需要两次CNN前向计算,第一次得到建议框特征给SVM分类识别,第二次对非极大值抑制后的建议框再次进行CNN前向计算获得Pool5特征,以便对建议框进行回归得到更精确的bounding-box,这里文中并没有说是怎么做的,博主认为也可能在计算2k个建议框的CNN特征时,在硬盘上保留了2k个建议框的Pool5特征,虽然这样做只需要一次CNN前向网络运算,但是耗费大量磁盘空间;
-
训练时间长,虽然文中没有明确指出具体训练时间,但由于采用RoI-centric sampling【从所有图片的所有建议框中均匀取样】进行训练,那么每次都需要计算不同图片中不同建议框CNN特征,无法共享同一张图的CNN特征,训练速度很慢;
-
整个测试过程很复杂,要先提取建议框,之后提取每个建议框CNN特征,再用SVM分类,做非极大值抑制,最后做bounding-box回归才能得到图片中物体的种类以及位置信息;同样训练过程也很复杂,ILSVRC 2012上预训练CNN,PASCAL VOC 2007上微调CNN,做20类SVM分类器的训练和20类bounding-box回归器的训练;这些不连续过程必然涉及到特征存储、浪费磁盘空间等问题。
- 再补充自己几点总结:(1)数据总共有三个训练用途:CNN fine-tune、SVM training、bounding-box regression training;(2)文中作者还分析了几种可能会对实验结果产生影响的因素,建议看一看,对以后自己想问题很有帮助:三种训练集数量、数据集选择、BB、RP这几种影响因素;(3)文中作者还考虑了R-CNN和Overfeat算法的关系,并留下了如何提速R-CNN这一悬念;(4)用R-CNN来做语义分割,计算features的两种策略:fg和full以及它们如何选择;(5)附录中对于resized操作、Bounding-box regression、数据冗余等有详细介绍,可以看一看;
-